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Multiple chemical equilibria under adiabatic conditions H, P = const, are consid- 
ered. It is shown that in this case the Joule-Thomson coefficient may also be expressed in 
terms of response equilibria, which were previously introduced in the study of  equilibria 
achieved under T, P = const. Nevertheless, our approach reveals some noteworthy dif- 
ferences between the isothermic and adiabatic equilibria. 

1. Introduction 

The Joule-Thomson coefficient # is the change of temperature caused by the 
change of pressure at constant enthalpy, # = (OT/OP)w It plays a distinguished 
role in chemical thermodynamics. (Recall that among the 336 possible first partial 
derivatives involving the eight common thermodynamic variables, viz., P, V, T, U, 
H, S, A and G, only # has been named after scientists.) In view of this we examined 
the behavior of/t in systems with multiple chemical equilibria, using a recently 
developed theoretical technique [1-6]. The thermodynamic identities for #, 
obtained in this work, seem to be hitherto unknown. 

Throughout this paper it is assumed that the system considered is at thermody- 
namic equilibrium. 

Recently the concept of response equilibria in chemical thermodynamics was 
shown [1-6] to be useful when considering the sensitivity of the equilibrium state of 
general reacting systems with respect to different parameters influencing the posi- 
tion of the equilibrium. It appears that within the stoichiometric formulation of the 
equilibrium conditions, the system's response may be presented as a sum of contri- 
butions associated with so-called Hessian and non-Hessian response equilibria 
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(HEQs and NHEQs),  and pairs thereof. For ideal systems the response is given as 
a sum of  contributions originating solely from response equilibria (i.e., without 
contributions from pairs of  HEQs and /o r  NHEQs). So far, systems at constant  
temperature and pressure (T, P = const.) have been considered [1-6]. We now 
extend our approach to systems constrained by constant enthalpy and pressure (H, 
P = const.), with emphasis on the Joule-Thomson coefficient. 

2. Definitions and notation 

We consider the general case of  a multiple-equilibrium chemical system in which 
n distinct chemical species, A1, A2, . . . ,  An interact in accordance with the following 
set ofstoichiometrically independent reactions (SIRs): 

v I 1 A 1  + / / 1 2 A 2  + . .  • + VlnAn = O, 

u21A1 + u22A2 + • • • + ~9.nAn = 0, 

VmlA1 + um2A2 + . . .  + vmnAn = 0. (1) 

Here vri (r = 1, 2, . . . ,  m, i = 1, 2, . . . ,  n) are stoichiometric coefficients assumed, 
as usual, to be negative for reactants and positive for reaction products. Every SIR 
is characterized by its extent ~r, r = 1 ,2 , . . . ,  m. 

Let n o and ni stand for the initial and equilibrium amounts,  respectively, of  the 
species Ai, i = 1, 2, . . . ,  n. If  an inert species is present in the system, then we denote 
it by An+l; its stoichiometric coefficient vr,n+l in any of  the SIRs is equal to zero. 
Then, the following mass-balance conditions are valid: 

m 

ni = n o + ~ Uri~r, 
r=l 

n+l  m 
0 n t = ~ n i = n  t + ~ A u r ~ r .  

i=1 r= l  

By Av, is denoted the sum of  the stoichiometric coefficients of the rth SIR whereas 
nt is the total amount  of  species. 

3. Basic thermodynamic re la t ions 

The theory of  adiabatic processes in reacting mixtures has been outlined in due 
detail in many  textbooks of  chemical thermodynamics (see, in particular, pp. 345- 
349 in [7]). Under  adiabatic constraints the following relations hold at the equili- 
br ium state [7-9]: 
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n+l 

H = E nini = const., (2) 
i=1 

n 

OG_Evr i t z i=O,  r = l , 2 , . . . , m ,  (3) AGr -- 0~', i=1 

where//i and #i are the partial molar enthalpy and chemical potential, respectively, 
of the species Ai, and AG~ is the change of Gibbs energy in the rth SIR, defined via 
eq. (3). Eqs. (2) and (3) enable the calculation of both the equilibrium composition 

~ (~1, ~ 2 , . . . ,  ~m) and temperature T. Then H and AGr may be viewed as functions 
of(, T and P, i.e., H = H ( ~ I ,  ~2 , - - . ,  ~m, T, P) and AGr = AGr( (1 ,  ~ 2 , . . . ,  ~m, T, e). 
Consequently, 

.,. . ÷  .,, .+  .,, : ° ,  (4) 

~--~ (cgAGtX~ [cG~s'k f OAG,'k f OT'k f OAGr'k 
~ O, 

r = l , 2 , . . . , m .  

In chemical thermodynamics it is known that [8] 

~- ~ : l,/ri~S i : AHr, 
T,P = i=1 

(5) 

(o,,) (o:,i) 
= ni - - ~  : l ' l i fp ,  i = Cp,~ ,  

P,~ ~=I P,~ = 

I (aAGr~ I (o~G) 
RT \ O~s ] T,p RT ~ T,p-- Gr" 

(OAG.  -- (OAGA =AVe. 
OT J?,~ T ' \ OP Jr,~ 

r , =  T(OV~ (6) 

where, as usual, AHr and A Vr stand for the standard enthalpy and volume change 
of the rth SIR, whereas Cp,~ and V are the heat capacity and volume of the equili- 
brium mixture. Observe that the quantity G,.s is defined by means of eq. (6). Now, 
eqs. (4) and (5) are transformed into 
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and 

( )  II } c°")] OT 1 T(OV'~ + ~ AHs -~ 
- ~  H-- ~,~ V -  t O T )  p,¢ s=l  H 

(7) 

RT s=l Irrst-o-P)H RT2 ~ tt--- - a V r ,  1 , 2 , . . . , m  (8) 

The quantity appearing on the left-hand side of eq. (7) is just the Joule- 
Thomson coefficient/t. We see that is composed of two terms, which we refer to as 
non-chemical and chemical. 

G, f  V -  \OT] p,~] ' (9) 

c7,< ,=1 ta ) .  

Clearly, in the absence of chemical reactions between the species present in the sys- 
tem, the Joule-Thomson coefficient is equal to /x ~c. The chemical equilibria, 
eqs. (1), induce an additional contribution to/x, expressed via eq. (10). We readily 
recognize that 

1 
- - -  ASS~( a~,I OP) s~ Cp,~ 

is the increment to #~h pertaining to the sth SIR, s = 1, 2, . . . ,  m. I fm > 1, then the 
SIRs, eqs. (1), can be chosen in infinitely many ways, to be all stoichiometrically 
equivalent. Therefore, the decomposition of ~ h  into contributions coming from 
individual SIRs is not unique and the selection of the terms 

1 
- ~ A H , ( O ~ , I O P ) H  

Cp,~ 

is to a great degree arbitrary. This difficulty will be overcome by decomposing ~ h  
into increments associated with response equilibria and pairs thereof. 

In what follows we will be mainly interested in the chemical component of the 
Joule-Thomson coefficient,/,oh, eq. (10). 

The motivation for the above specified terminology is that the "chemical" 
term, eq. (10), in an evident and explicit manner depends on the chemical reac- 
tions occurring in the system. Not  able to find a more appropriate name, we call 
the other term, eq. (9), "non-chemical". It should, however, be noticed that the 
volume (V) in eq. (9) is a function of both T, P as well as reaction extents (1, (2, 
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• -., (m. Thus, the specification "non-chemical" (which, anyway, is just a name) 
does not mean tha t /pc  is claimed to be independent of the chemical processes 
occurring in the system. (At this point we also wish to make clear that the pres- 
ent partition of the Joule-Thomson coefficient into/~c and #~h differs from the 
usual [7-9] partition of thermodynamic partial derivatives into a contribution 
coming from a "frozen" mixture of species [8] - which is strictly reaction-inde- 
pendent - and the reaction-dependent "configurational" [8] or "relaxational" 
[10] contribution.) 

Substituting eq. (7) into eq. (8) we arrive at the following system ofm linear equa- 
tions in m unknowns (O~/Oe)n,  s = 1 ,2 , . . . ,  m: 

C9~1 L12 0~2 -t- . . . -~- LI,. O(m 
Ll l  ~-~ + OP -Off = A1 , 

0~1 , r ~ 2  tg~rn = A2 
L21 ~ -t- 1--,22 - ~  + ' ' '  + L2m OP 

Z ~ 1  0~2 Oq~m = Am, (11) 
m l - ~  + Lm2- -~  + . . .  + Lmm OP 

where 

Zrs -= Grs + bAHrAHs  , b = - -  
Cp,{RT 2 ' 

(12) 

A, = - [R---~ A Vr 

The solution of the system (11) is 

where 

= ( A , / , , ,  

OPJ It A & p  ' 
s =  1 , 2 , . . . , m ,  

Ll l  L12 " '"  

L21 L22 " '"  

Lml Lm2 " " • 

Ame = detllL~,ll = 

Lira 

L2~ 

Zmm 

(13) 

(14) 

(15) 
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( A , ) z ,  e = 

Lll L12 " ' "  Ll,s-1 A1 Ll , s+l  " ' "  Llm 

L21 L22 . - .  L2,s-1 A2 L2,s+l - -"  L2m 

Zml Lm2 "'" Lrn,s-1 Am Zrn,s+ 1 " ' "  Zmm 

eq. Substituting eq. (14) into (10) we obtain our starting expression for the 
(chemical component of the) Joule-Thomson coefficient: 

/ f i h  1 m 
Cp,~AH,? E AHs(As)H,?. (16) 

s=l 

If the model of the system under consideration is specified (ideal behavior, for 
instance), then eq. (7) permits a quantitative evaluation of the Joule-Thomson 
coefficient. In the case of multiple equilibria, however, the Joule-Thomson coeffi- 
cient is quite complex and its qualitative behavior cannot be predicted from eq. (7) 
(without performing numerical calculations) even in the case of ideal systems. 
Recall that in ideal systems/~c = 0. One of the ways to simplify the treatment of the 
Joule-Thomson coefficient and to make its behavior more transparent is to present 
/fih in terms of contributions associated with response equilibria. 

4. More  notations and definitions 

In order to introduce the concept of response equilibria [1-6], recall that the 
chemical potential #i of the species A; may be considered as a function of the extent 
of reactions #i (~1, ~2, ..., (m, T, P), or as a function of the number of moles #i (hi, 
n2, .. . ,  n,, n,+1, T, P), or as a function of mole fractions #i (xl, x2, ..., x,, x,+l, T, 
P). In view of this, we define three matrices: 

1 ~r::X O#r 1 ( O Z ~ )  i , j = l , 2 ,  ,m,  G = IIG0II, Go. = - ~  .jr 0 ~  - R T  ' ' 

, 0 . , _ 1  
R = IIRij l l ,  R O -  RTOnj R T  

1o. ,  
P=lle°l l '  P ' J - R ~ 0 ~  R~ 

These matrices are interrelated [4,6] as 
tl  n 

GO = ~ Zui, ujsR,s, i,j = 1,2,...,m, 

r=l s=l 

i,j = 1 ,2 , . . . , n  + 1, 

i , j =  l , 2 , . . . , n +  l .  

(17) 
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RO:_I ( P i j - a ) ,  i , j :  l , 2 , . . . , n ,  (18) 
nt 

where 

n+l  n+l  

a = Z Z X r X s P r s .  

r = l  s = l  

Notice  that the summation in eq. (17) is only until r, s = n, because ui,n+l = 0 for 
all i  = 1 , 2 , . . . , m .  

Further, consider two ordered sets o f  integers: an (m - 1)-tuple il, i2, .. . ,  ira-l, 
satisfying the condition 1 ~<il < / 2  < . . .  < im-1 <<,n, and an (m - 2)-tuple il ,/2 . . . .  , 
ira-2, satisfying the condition 1 ~<il < / 2  < . . .  < ira-2 ~<n. For them we use the 
shorthand notion [/] and {i}, respectively. We then define the following determi- 
nants: 

D([il,k) = 

V l  ,il  /'11 ,i2 " " " /]1 ,ira_ ~ / ] l , k  

/ ]2 , i l  / ]2, i2 " " " b '2 , i , ._ l  /~'2,k 

l Jm , i l  lira,ira " . . l J m , i ~ _ l  1 ]m,k  

(19) 

D ( [ i ] , X ) ]  = 

V l , i l  V l , i 2  " " " / ] l , G - i  

/ ]2 , i l  /J2,i2 " " " / /2 , i , - . - i  

1./m,il 1Ira,ira • . . l ] m , i m _ l  Xm 

D({i} ,k)  = 

/~1 ,fi / ]1 ,i2 " • " / J l  , i , ._2 m t J l  V l  ,k  

/ ]2 , i l  /]2,i2 " " " l12,irn-2 A l l 2  l ' /2 ,k  

l~m, i l  l ' lm,im " " " l'l m , i , n -2  A l l m  P m , k  

(20) 

D({ i } ,X)  = 

/ll,il V l , i 2  " " " / ] l , i m - 2  m / ] l  X ' I  

k '2 , i l  v 2 , i 2  " " " v 2 , i , . _ 2  A / J 2  )~ '2  

l l  m , i l l ]  rn ,im • . . l ira,ira_ 2 A l ] m  Xrn 

These determinants have a definite chemical meaning. Namely,  D([i], k) and 
D({ i } ,  k) are the stoichiometric coefficients o f  the species Ak in two special classes 
o f  reactions, or equilibria, named Hessian response equilibria, HEQs, and non- 
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Hessian response equilibria, NHEQs, respectively [1-6]. The stoichiometric equa- 
tion of an HEQ is, thus, given by 

n 

D ( [ i ] , k ) A k  = O, 
k=l  

whereas the stoichiometric equation of an NHEQ reads 
n 

~ ' ~  D (  { i} ,  k ) A k  = O . 
k=l 

It follows that any selection ofm - 1 species Ai , ,  Ai2, . . . ,  Ai,,_~ from a total ofn spe- 
cies defines a particular HEQ. We denote this HEQ by ~/(ii,/2, • •., ira-l) or ~/([i]) or 
simply by 7-/. An NHEQ is defined by a selection ofm - 2 species Ai,, Ai,, . . . ,  Aim_2 
and is denoted byA/'(il, h , - . . ,  ira-2) or.h/'({i}) or simply byAf. 

Response equilibria have the following properties. The stoichiometric coeffi- 
cients of the species Ai~, Ai2, . . . ,  Ai,,_~ in the HEQ 7-/([i]) and of the species A i~, Ai2, 
• . . ,  Aim_2 in the NHEQ A/'({i}) are equal to zero. The sum of stoichiometric coeffi- 
cients of a NHEQ is equal to zero. If Xr is a quantity associated with the rth SIR, 
then D([i], X) and D({i}, X) are the same quantities associated with the HEQ 7-/([i]) 
and with the NHEQ Af({i}), respectively. When misunderstanding is to be avoided, 
we denote them by X(T/) and X(Af), respectively. In particular, AH(7-/) = D([i], 
AH) and AH(A/') = D({i}, AH) represent the standard enthalpy changes of T-/([i]) 
andA:({i}), respectively. 

Finally, we define 

n n 

L([i], [/]) = ~ ~ D([i],r)O(~'],s)Rrs, 
r=I s=I 

Ril dl Ril 

Ri2ji Ri2& 

Ri,~_l ji Rim_l & 

Ril din- l 

Ri2d~_l 
(21) 

p ( [i] '~ : 

Pil & Pil & " " " Pil j,,-i 

Pi2dl Pi2& " " " Pi2dm-i 

Pim-ldl Pim-h/2 "" " Pi,,-ld,~-I 
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Pil dl 

~ j }  • 

Pi,~-2ji 

Pi, j= "'" Pi, a.,-= 
Pi=j= " " "  Pi2 j,~-2 

: 

P i r n - 2 j 2  " " " P i r n - 2 d r n - 2  

(22) 

The above determinants were shown to represent the extent of coupling between 
HEQs (the first two) and NHEQs (the third one) [4,6]. 

5. The main  results 

We are now in a position to formulate the following results: 

A H , p = A T , p + b Z Z R ( [ i ] ) D ( [ i ] , A H ) D ( ~ ] , A H )  
iil vl ~] 

where 

A T , p = I Z Z R ( [ i ] ) L ( [ i ] , ~ ] )  

and 

(ii,) 
ffh _ Z Z R D([il,A)D(~], AH) 

c . h , ~  ~ []] ' P'~ ' [il [1"1 

(23) 

(24) 

(25) 

1 [ 
- -  Cp'(AH'pn~n-1 ~[il ~Pti] ~1 D([il'A)D(~]'AH)' 

- a  Z ~--~P( {i} )D({ i} ,A)D({ j} ,AH)I .  (26) 

The proof of these results is given in the appendix. 
The fundamental feature of the above formulas is that they enable us to express 

both the determinant AH, P and the (chemical component of the) Joule-Thomson 
coefficient in terms of response reactions. The decomposition of/ t  into contribu- 
tions associated with response equilibria is unique and is independent of the choice 
of SIRs. 

There exist two equivalent formulas for the Joule-Thomson coefficient. In 
eq. (25) the chemical component of the Joule-Thomson coefficient is given as a sum 
of contributions originating solely from HEQs and pairs thereof. In what follows, 
the analysis based on eq. (25) will be referred to as the HEQ-approach. 

Alternatively, we can represent ~ h  in terms of both HEQs and NHEQs, 
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eq. (26). In this case we speak about the HEQ/NHEQ-approach. Notice that in 
the HEQ/NHEQ-approach no pairwise interaction between HEQs and NHEQs 
are encountered• 

6. Ideal systems 

At a first glance it may look that the HEQ-approach is more advantageous, 
because eq. (25) contains fewer terms than eq. (26). This, however, is not so, at least 
not for ideal-gas-phase adiabatic processes. Indeed, in this case the HEQ-approach 
leads to non-zero pair-contributions [4]. A way to avoid pair-contributions is to 
rearrange the system's' response so as to introduce NHEQs, which is tantamount to 
the HEQ/NHEQ-approach. In view of this we restrict our discussion only to the 
HEQ / NHEQ-approach. 

For ideal systems,/~c = 0 because of[9] 

0 (27) 

and, consequently,/, = / fh .  For ideal systems, we further have 

~ i  = / z0 Av R T I n  x i ,  P r s = - - ,  a = l ,  
X s  

where ars is the Kronecker delta. This implies [3,6] 

[i]) 1 n t  -1 
= 6[i1,[/] -- (5[il,O-i) 

P [/] X i l X i 2 . . .  Xi, ,_, t l i l n i 2 . . .  ?lira_ ! 

p ( { i } )  1 n~ n-2 

{ J }  : X i lX i2  Xirn-2 tS{i},{]'} - -  iS{i},{./} . • • .  n i l  hi2 • . .  him_2 

From eq. (26) is now seen that in ideal systems contributions to p, coming 
from pairs of HEQs and pairs of NHEQs vanish. Consequently, the system's 
response is equal to a sum of contributions coming only from individual 
response equilibria: 

Cp,  A n,p 

where 

rr(7-[)  = (n i l n i2  . " •n i , ._ l )  -1  , 7r( . IV ' )  = ( n i l n i 2  " " n i , , _ 2 n t )  - 1  • 

In view ofeq. (27), eq. (13) is reduced to 
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Ar - - -  , r =  1 , 2 , . . . , m .  
P 

(29) 

Inserting eq. (29) into eq. (28) and taking into account 

A ( ~ )  = D([i],A) = _ l D ( [ i ] , A u )  = 1 A u ( ~ ) ,  
/ i  

A(N') = D({i},A) = - 

w e  obtain 

1 
D({i},Au) -- - f i  Au(N') = O, 

1 
-- pCp,~AH, P Z lr (~)Au(~)AH(~)  , (30) 

where A u ( ~ )  is the sum of  stoichiometric coefficients of  the respective HEQ. 
Hence, for ideal systems the Jou le -Thomson  coefficient is expressed as a sum of  
contr ibutions coming solely f rom individual HEQs. As 7r(7-/) > 0, the sign of  these 
contr ibutions is determined by the sign of  the product  Au(7-/) • A H ( ~ ) .  

7 .  A n  e x a m p l e  

We consider here the effect of  pressure on the equilibrium explosion temperature  
of  a mixture of  hydrogen and oxygen. This system may  be described by the follow- 
ing SIRs: 

1 .2H = H2, 

2 . 2 0  = 0 2 ,  

3. H + O  = OH, 

4. 2H + O = H20,  

AHI = -457.2  k J / m o l .  

AH2 = -510.7 k J / m o l .  

AH3 = -447.8 k J / m o l .  

AH4 = -965.2  k J / m o l .  

The above reaction enthalpies refer to 3000 K. The respective stoichiometric matr ix  
is 

H O H2 02 OH H20  

- 2  0 1 0 0 0 

0 - 2  0 1 0 0 

- 1  - 1  0 0 1 0 

- 2  - 1  0 0 0 1 

As m = 4, each H E Q  is defined by choosing m - 1 - 3 species f rom a total of  6 
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species. This can be done in 20 distinct ways, resulting in 20 HEQs. If the species 
selected are H, O and H2 then the respective HEQ is 

- 2  0 1 - 2  H 
0 - 2  0 0 

-1  -1  0 -1  

- 2  -1  0 - 2  

+ 

- 2  0 1 0 0  
0 - 2  0 - 2  

-1  -1  0 -1  

- 2  -1  0 -1  

+ - 2  0 1 1 H2 
0 - 2  0 0 

-1  -1  0 0 

- 2  -1  0 0 

- 2  

0 
+ 

-1  

- 2  

0 1 0 02 
- 2  0 1 

-1  0 0 

-1  0 0 

+ - 2  0 1 0 OH 
0 - 2 0 0  

-1  -1  0 1 

- 2  -1  0 0 

which is equivalent to 

02 + 2H20 = 4OH. 

- 2  

0 
+ 

-1  

- 2  

The enthalpy change for this HEQ is 

- 2  o 1 AH~ 

0 - 2  0 AH2 

-1  -1  0 AH3 

- 2  -1  0 AH4 

0 1 0 H20 - 2 0 0  

-1  0 0 

-1  0 1 

=0, 

= -AH2 + 4AH3 - 2AH4. 

1.02 -{- 2H20 = 4OH 
2. H2 -t- 2OH = 2H20 
3.2H2 + 0 2  = H20 
4. H2 -t- 0 2  = 2OH 
5. O + H20 = 2OH 
6 .20  = 02 
7. O + H2 = H20 
8 .20  + 2H2 = 2OH 
9. H + OH = H20 
10.4H + 02 = 2H20 

AH(3000 K) (kJ/mol) Au 
649.9 +1 

-577.9 -1  
-505.2 --1 

72.3 0 
69.6 0 

-510.7 - 1 (occurs 4 times) 
-508.0 -1  
-438.4 -1  
-517.4 -1  

-1418.8 - 3  

A complete list of HEQs obtained in this way, together with their enthalpy changes 
at T --- 3000 K and sums of stoichiometric coefficients is given as follows (only dis- 
tinct HEQs are given): 
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11.2H + 02 = 2OH -384.9 - 1  
12.2H = Hz -457.2 - 1 (occurs 4 times) 
13.2H + O = H20 -965.2 - 2  
14. H + O -- OH -447.8 - 1  

On the basis of  these data we can readily analyze the sign of  the Joule-  
Thomson  coefficient, i.e., the effect of pressure on the equilibrium temperature. 
Indeed, the product  Av(7-/) • AH(7-/) is positive for all HEQs. From eq. (30) it then 
follows that/~ > 0, i.e., an increase of pressure in this system leads under all circum- 
stances to an increase of temperature. This conclusion is confirmed by numerical 
calculations 1 shown in Fig. 1. 

8. Discussion and concluding remarks 

The present analysis shows that the concept of response reactions may be in a 
natural manner  extended to equilibria achieved under conditions different from P, 
T =  const. In particular the Joule-Thomson coefficient, which is an important  
characteristic of  the adiabatic processes (H, P = const.), is now shown to be expres- 
sible as a sum of contributions coming from response reactions. There exist two dis- 
tinct, but  equivalent, methods of decomposing the Joule-Thomson coefficient in 
general systems - the HEQ- and the HEQ/NHEQ-approach .  Within the HEQ- 
approach the Gibbs energy is viewed as an implicit function ( through the extent of  
the reaction [12]) of  the number  of moles of the reacting species. Then the Joule-  
Thomson  coefficient is expressed in terms of HEQs only. When the Gibbs energy of  
the system is considered as an implicit function of  the mole fractions of  the reacting 
species, we arrive at an expression in which the Joule-Thomson coefficient is pre- 
sented as a sum of contributions coming from HEQs and NHEQs.  This is the 
HEQ / NHEQ-approach.  

The interrelation between these two equivalent approaches is best seen when 
considering ideal systems. In this case the contributions coming from NHEQs  are 
equal to zero. Eqs. (25) and (26), however, are still different. The point is that  the 

(~]) in eq. (25) does not necessarily vanish for [i] ¢- [j] and, consequently, function R 
in the HEQ'-a~proach, the coupling between HEQs remains even in ideal systems. 
This is tlo.t the case in the HEQ/NHEQ-approach ,  eq. (26). For  ideal systems, we 
have P (~]) = 0 for [i] ¢- [j] and, hence, no coupling. We, therefore, conclude that 

the HEQ/NHEQ-app roach  is a way to avoid coupling between response reactions 
in ideal systems. 

1 Numerical calculations were carried out using ECHIMAD-P/V computer program [11], running 
on IBM compatible PCs, available on request from one of the authors (D.G.). 
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Fig. 1. Equilibrium explosion temperature as a function of pressure for different stoichiometric ratios 
of  hydrogen and oxygen; the initial temperature is taken to be 298 K. 

The analysis in this paper was limited to the Joule-Thomson coefficient 
(OT/OP)m Evidently, this partial derivative is just one of the sensitivity coeffi- 
cients of the system examined. The problem may be readily generalized by consid- 
ering the sensitivity coefficients pertaining to an arbitrary parameter Y that 
influences the position of the chemical equilibrium under adiabatic constraints H, 
P = const. (as well as under any other thermodynamic constraints [9]). However, 
a general treatment of the sensitivity coefficients (OT/OY)I_I, t, and (Onk/OY)~,p 
shows that in addition to contributions coming from response reactions there 
appear additional terms whose meaning is not yet entirely clear. Work along this 
line is in progress. 
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Appendix  

The proofs of  the thermodynamic identities reported in this work are similar to 
the earlier communicated proofs of some other results in sensitivity analysis of  sys- 
tems with multiple chemical equilibria• In view of this, we skip all steps which can 
be found in our previous publications• In such cases, the place where the respective 
algebraic transformations are outlined in due detail is precisely indicated. 

Proof of eq. ( 2 3 )  

Substituting eq. (12) into the first column of the determinant AH,p, eq. (15), we 
obtain 

AH, P : 

Gll + b. AH1 • AH1 L12 L13 "'" Llm 

G21 + b .  AH2. AHI L22 L23 "'" L2m 

Gml + b .  A H ,  n • A HI Lrn2 Lm3 "'" Lmm 

GI1 L12 Ll3 "'" Llm 

G21 L22 L23 "'" L ~  

Gml Lm2 Lm3 . . .  Lmm 

+ bAH~ 

AH1 

AH2 

AHm 

Repeating the same treatment with the second column. 

AH, P : 

GII GI2 L13 • • " Lira 

G21 GEE L23 ' ' "  L2m 

Gml Gm2 Lm3 ' ' '  Lmm 

+ b A H 2  

all 
G21 

Gml 

L12 

LEE 

L~2 

AH1 

AH2 

A Hm 

L13 

L23 

Lm3 

L13 

L23 

Lm3 

• " " L i r a  

• " L2m 

• " -  Zmm 

• ." Llm 

• "" Z2m 

• ' '  Zrtlm 

+ bAH1 

AHI GI2 L13 

AH2 G22 L23 

AH, n Gin2 Lm3 

• . . Lira 

L ~  

L~m 

+ b2AH1 AH2 

AH1 AH1 L13 

AH2 A H  2 L23 

AHm AHm Lm3 

• "" Llm 

• " L2m_m [ 

•. • LHm 
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we observe that the last determinant is equal to zero. Continuing the procedure 
for all columns of A,q,e, we ultimately arrive at 

AH,  P ~-- 

GI1 G12 GI3 --- GI~ 

G21 G22 G23 "'" G~,, 

Gml Grn2 Gin3 " "  Gram 

m 

j=l 

Gll G12 " " G1j-1 AH1 G l d + l  

G21 G22 "'" G2d-1  An2  G2j+I 

Gml Gin2 " "" Gm,,i-1 A n m  Gmd+l 

• . .  Glm 

"'" Gzm 

" ' "  a m m  

(A.1) 

The first term on the right-hand side of eq. (A 1) is just the Hessian determinant 
of the Gibbs energy [1]. In our previous works we denoted it by A. Here we denote it 
by Ar,e in order distinguish it from the determinant Amp. In the theory ofisother- 
mic-isobaric chemical equilibria Ar,e plays the same role as does AH,e in the theory 
of chemical equilibria under the constraints H, P = const. 

Eq. (24) is just "Result 1" stated and demonstrated in ref. [4]. 
In order to complete the proofofeq. (23) it remains to show that 

Gll "'" G1j'-I AH1 G1j+l " ' "  Glm 

G21 • " G2j-1 AH2 G 2 d + l  • " G2m 
A H j  . . . .  

j=l 

Gml " "" Grad-1 AHm Gmj+l • "" Gram 

= Z Z R ( [i] ) D([i], AH)D([/], AH) .  (A.2) 
iij \ [J] 

The proof of eq. (A.2) follows precisely the same lines as the proof of "Result 2" 
in ref. [4]. The only difference is that instead of AHj we earlier [4] had ujk and that 
thej th  column in the determinant occurring on the left-hand side ofeq. (A.2) earlier 
[4] contained a variable denoted by X. 

P r o o f  o f  eq. (25)  
We start with eq. (16) and consider the sum occurring on its right-hand side. By 

means of a reasoning fully analogous to what was used above to obtain eq. (A. 1), 
we get 
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{ [ Gll "'• Gl:-I Al G~,~+I 
m m G21 • " ' G2,s-i A2 G2.v+1 

s= l 

G,,,I ••" G,.:-I A,,, G..:+I 

• " " G l m  

" "  Gz ,  n 

• . .  G , , , ,  

[ G11 •" Gl,.-1 AHI GI:+I 
,~ G21 "'" G2:-I AH2 G2,.+I 

+b v-,~ A H ,  : . . 

G,,,I "'• G,.,:-I A H , ,  G.,,,r+l 

• • - G l , s - I  

G2:-l 

Gin,r+ 1 

AI GI:+I 
A2 G2:+l 

A m  G m : + l  • • G!mm 

(A.3) 

The first term on the right-hand side of eq. (A.3) has the same form as the right- 
hand side ofeq. (A.2). Therefore, similarly as in the case ofeq. (A.2), we have 

m 

s = l  

G l l  • • • Gl , s -1  A1 Gl,s+l 

G21 - "  G2:-I A2 G2:+l 

Gml " '"  Gin,s-1 A ~  Gin,s+1 

• " " G l m  

" '"  GEm 

• - -  a m m  

[i] ) D([i], A)D(~], AH) .  (A.4) 
[/] [/] 

Substituting eqs. (A.3) and (A.4) back into eq. (25) we see that it only remains to 
prove that the second term on the right-hand side ofeq. (A.3) is equal to zero• 

An expression analogous to the second term on the right-hand side of eq. (A.3) 
was examined in Appendix A of ref. [6], in connection with the proof of formula 
(31) ofref. [6]; we particularly refer to the last equality in Appendix A. Now, eq. (17) 
can be rewritten as 

G = vRv t , (A.5) 

where v = IIv,Jll is the stoichiometric matrix; notice that eq. (A.5) is the same as 
eq. (31) in ref. [6]. In view ofeq. (A.5), and employing a reasoning described in ref. 
[6], we conclude that 

GI:-I AI Gl:+l 
G2,s-I A2 G2:+I 

Gm:-I Am Gm:+l 

• •" Glrn [ 

°'li 
• • " ~, , ,m 

Gll "'" Gl:-l Fl G~,.+l 

-, ] G21 "•• G2,,-I F2 G2,,+l 

r= l  ~ 

- ]G'ml •'" G I ~m Gm:+l . . . .  

R ( {i} ) D({i}, AH, r)D({j), AH, A), 
ti} ~J} 

(A.6) 
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where 

D({i} ,AH,  P) = 

Vl,6 vl,6 " " - vl,i,._2 AH1 

/]2,il /]2,i2 " " " U2,im_2 A H 2  

lYm,il lYm,irn " . . l)m,im_2 A H m  

F2 

Fm 

D({]}, AH, A) = 

Vl dl /21 d2 " " " /)1 jm-2  AH1 A 1  

V2& v2d2 • • • V2d, ._ 2 A n 2  A 2  

Vrndl Vmd,. " '"  Vmd,._2 A H m  A m  

(A.7) 

In the case of eq. (A.3) the parameter Fj coincides with AHj, j = 1, 2, . . . ,  m. 
Therefore the last two columns in the determinant in eq. (A.7) are equal and this 
determinant vanishes for all {i}. Then also the right-hand side of eq. (A.6) is equal 
to zero. 

By this we complete the proofofeq.  (25). 

Proof of  eq. (26) 
We start with eq. (18). Substituting it into eq. (21) and transforming it in the same 

way as we did in the case ofeq. (A. 1), we obtain 

\[j] --nr~_ I P - - a Z P k  , (A.8) 
~ ]  k = l  ~ k ~ ]  

where 

Pildl " " " Pildk-i 1 Ph&+l " " " Pildm-i 

p k  [" [i] " ~ = Pi2il  " '"  Pi2&-i  1 Pi2ik+l " '"  Pi2im-, 

. . . .  

Pim lil "'" Pim-lik-i 1 Pim-lik+l "'" Pim-lim-l 

Comparing eq. (A.8) with eqs. (25) and (26) we see that what remains to demon- 
strate is 

m--1 ( [ i ] )  ( { i } )  
Z Z  Pk D([i],A)D(~],AH) = Z Z  P .¢i~ D({i} ,A)D({]} ,AH).  

[i] [/'1 k = l  ~ ]  {i} {j} \ tYJ  

(A.9) 

Denote, for brevity, the left-hand side ofeq. (A.9) by Q. 
By expanding the kth column of the determinant Pk (I~I) in eq. (A.9) we get 

\ u  J,/ 
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m - I  

Q =  E E E ( - 1 )  k+h 
l;] ~] k=l 

P i l  j i  

Pih-ijI 

Pih+l ~il 

Pim-lji 

• " Pil Jk-I Pfi Jk+l 

"" Pih-,jk-, Pi.~:.,,/,~+, 

"" Pih+,jk-I Pih+ljk+l 

• " Pi,,-1,/k-i Pi,.-ljk+l 

P i!  Jrn- I  

Pih-i,].,-i 

Pih+lj~,-i 

Pi.,-l ,i,.-i 

× D ( [ i ] , A ) D ( ~ ] , A H ) .  (A.IO) 

Denote now the (m - 2)-tuples ( i l ,  i2, . . . ,  ih-1, i h + l ,  . . - ,  / m - l )  and (Jl, j2, . . . , A - l ,  

A+I, .-., j,~-l) by {i'} and ,{j'}, respectively• With this notation the determinant in 
eq. (A.10)is equal to P (~,{), see eq. (22)• Bearing in mind that [4,6] 

1 n n 

E E :  ( m _  D 2 E E E E  
[i] ~1 ) {i,} {j,} i~=lA=l 

it follows that 

O = 
1 m-lm-I n n ( I 

( m _ I ) 2 k ~ = I E E E E E ( - - 1 ) k + h p  {i'{ D ( [ i ] , A ) D ( ~ ] , A H ) .  
h = l  {i'} {j'} i , = l j , , = l  \ { j r }  

Now, using the definitions (19) and (20), we obtain 

n 

E D([i], A) = 
ih=l 

/'/l,il • • " b'l,ih-i A/]I b'l,ih+i " " " I/l,im-I AI 

b'2,il " " " /"2,g-I A/]2 /~2,ih+l " " " U2,i,._, A2 

b'm,il " ' •  Vm,ih_l A U r a  t ~ m ,  i h + l  • "" lJm,ira_l Am 

= (_1) m-l-h 

/Jl,il  • " " / / l , ih-I  /11,ih+1 " " " Vl,im-I 

/'/2,h " " " /:'2,ih-i /]2,ih+l " " " /22,i,.-! 

l/m,il  • . . D'm,ih_l Mm,ih+l • . . Mm,im_l 

A v  1 

A~, 2 

A~ m 

A1 

A2 

Am 

= ( - 1 ) m - l - h D ( ( i t } , A )  

and, similarly, 
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n 

D([j], AH) = (-1 )m-l-kD({f}, AH). 
jk=l 

Therefore, 

1 m - l m - I  ~-~.( 1)k+h+(m-l-k)+(m-l-h)P ({ i , } ,~  
O - - ( m  1)2 k__~l h__~l ~-'~ 

- t ,"}  - - { - / ' }  ) 

x D({i'},A)D({j'},AH) 

- ~ - ~ .  ~ - ~  ., D({i '},A)D({j'},AH). (A.11) 
- { j }  (m 1) 2 k=l h=l {i') {j') 

Because the expression in square brackets in eq. (A. 11) is independent ofk and h, 

{i') {/") \ ~1} 

which is tantamount to eq. (A.9). The proofofeq. (26) has thus been completed. 
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